What is Fuzzy Matching?

Why CPAs Should Know About This Powerful Tool

DOWNLOAD PDF

TECHNOLOGY ISSUES

By Shivam Arora, CPA

In accounting, we regularly encounter situations where work is being performed manually and there is substantial scope of automation. For example, a CPA was downloading sales tax permits for their client’s vendors to perform scoping for potential tax refunds. After downloading a permit, they would move it manually to the respective vendor’s folder.

This process, they complained, took hours of their time, especially since multiple state permits had to be downloaded per vendor. However, the even more frustrating fact was that all file names “almost” contained their vendor’s name, with omissions of letters and additions of special characters that did not seem to follow any one pattern.

This is a common problem. There are many business cases where practitioners spend time over text matching tasks that are intuitively obvious but do not follow a pattern and therefore, must be performed manually. Fortunately, solutions exist, such as fuzzy matching.

RELATED CPE:

Artificial Intelligence for Accounting and Financial Professionals

Fuzzy Matching

Fuzzy matching encompasses an umbrella of statistical techniques that compare and match approximately equal strings. These techniques employ statistical rules to arrive at a relative degree of truth on the similarity between two strings, in contrast to a Boolean approach, which uses a separate, hard-coded format for each task to provide a Yes/No answer.

The concept of fuzzy matching is analogous to the substance over form principle in accounting. It’s the same reason why passthrough entities do not pay income tax even though they are technically separate legal entities to their owners or why the IRS sometimes classifies unusually large salary payments to owners as dividends even though they are technically salary payments.

Fuzzy matching, like these cases, gives preference to substantial equivalence between strings over their technical form.

The Underlying Logic

There are several approaches available to fuzzy match data, but I'm going to go briefly over the most common one. The Levenshtein Distance (LD) is commonly used to establish similarity between two strings. It is the minimum number of single character edits that are required for changing either of the two strings into the other. An edit can refer to a character’s insertion, deletion or replacement. Consider the following strings:

charlie_vendor
$charl_vndr$

Assume that the naming convention of vendors in a system is “{name}_vendor.” It is intuitively obvious that the file downloaded is for the vendor Charlie. However, unless all downloaded files follow the same naming convention as above, a Boolean approach to matching will declare both strings unequal.

When I run LD-based fuzzy matching (LDFM) in Python, I get an LD of 6. This means that the shortest number of single-character changes to exactly match the file name and the vendor’s name is 6. Converting it into the LD ratio (using a formula I will not delve into), I obtain .77.

What I now have is a quantified degree to which both strings are similar: my computer understands that both strings are about 77% similar. It still knows that they are not equal; it has just established equivalence

Applications of Fuzzy Matching in Accounting

There can be several applications of fuzzy matching in accounting. A few of them follow.

File Renaming. As with the above case, fuzzy matching can be used to rename downloaded files and match them to their respective group. Names of files downloaded from the internet often contain either truncated text or unwanted characters.

Support Accounting Processes. Fuzzy matching can support accounting processes such as bank reconciliations, inventory tracking and evidence gathering for various types of audits.

Internal Controls. Fuzzy matching can detect duplicate AP payments with minor variations, compare purchase orders to deliver invoice/bill of lading and enforce data entry checks. In case of fraud, it can also aid in identifying matches across different databases or comparing fraudulent acts across different time periods.

Preprocessing for ML. With the arrival of artificial intelligence, organizations are increasingly utilizing machine learning (ML) techniques. A substantial amount of ML in the financial space occurs on data generated by accounting systems. By facilitating preprocessing of data using fuzzy matching techniques, organizations can develop robust and accurate ML models.

A Coding Exercise

One can perform fuzzy matching in Excel (refer to the article "Excel: Fuzzy Matching" by Bill Jelen in Strategic Finance magazine). Unsurprisingly though, the functionality is extremely limited and there is little clarity on what technique is used. A better alternative may be the programming language Python.

Python is a high-level programming language that is general-purpose; it can be used to code for a wide variety of situations. The beauty of Python is that it is intuitive and relatively easy to learn, which is why it is used extensively in business. It hosts numerous libraries that are specifically designed for business-related tasks.

See this: Fuzzy Matching Exercise

Case Examples

Consider the below as examples of how helpful fuzzy matching can be for accountants and auditors.

1. A CPA is performing a quarter-end bank reconciliation. There are 300+ entries on both sides. The CPA notices that transaction descriptions on bank statements are similar to those in the books, albeit with expected differences such as truncations, word order and unwanted characters. Using LDFM, the CPA can match 270 transaction descriptions between the bank and the books. The CPA also verifies that the corresponding amounts across these transactions are equal.

The CPA now begins to reconcile the remaining few transactions on both sides. Using fuzzy matching has greatly reduced the manual workload.

2. A tax consultant is working on a reverse audit for one of their clients. The consultant must download sales/use tax permits for the client’s 500+ vendors to ascertain the type of permits held in the relevant states.

For simplicity, assume that a single file contains all permits for one vendor. The consultant has an Excel file with a list of all vendors. Instead of manually linking each vendor to their corresponding permit, the consultant employs LDFM. This results in a >90% confidence match for 460 vendors.

After a cursory review of the matches to ensure accuracy, the consultant needs to only focus on the unmatched vendors for linking permits manually. If it takes 30 seconds for the consultant to browse through all permits to find the correct permit for each vendor and they have a code already available to perform LDFM, they have just reduced the task time by close to four hours.

3. One warehouse of a manufacturing company uses LDFM to compare raw materials ordered on a purchase order to those received and listed on the invoice. This helps the warehouse detect not only discrepancies between the quantity of items ordered, but also between their type.

Over the years, the warehouse has been able to reduce purchase return-related costs by up to 40% by refusing delivery of suboptimal orders. You can read the outstanding use case of fuzzy matching in fraud examination in an article written by Ehsanelahi in Data Ladder titled "Fuzzy Matching 101: Cleaning and Linking Messy Data."

A Powerful Tool

Given the nature of accounting work, fuzzy matching techniques can be a powerful tool in a CPA’s arsenal.

Fuzzy matching can be performed in Excel but is much more powerful when performed in a programming language such as Python, which is an intuitive programming language that, in addition to core software development, has extensive use cases in a business setting.

As evident, it is not hard to follow most (if not all) aspects of the Python exercise above even without basic knowledge of the language. CPAs should consider learning a programming language to automate much of the manual tasks they perform.

About the Author: Shivam Arora, CPA, is a data scientist. Arora holds dual master’s degrees: an MS in Accounting and an MS in Business Analytics. As an applied Artificial Intelligence (AI) consultant at one of the largest consulting firms in the world, Arora specializes in applied AI for accounting and finance. Research interests include financial modeling and statistical relationships in the financial markets, application of AI to accounting and Robotic Process Automation (RPA). Email shivam.arora@mavs.uta.edu.

 

 

  • Meet TXCPA’s 2025-2026 Chair Billy Kelley

    Billy Kelley, CPA and managing partner at Dutton, Harris & Co, is the 2025-2026 Chair of TXCPA. With a background in public accounting, industry and entrepreneurship, he is passionate about leadership, mentorship and strengthening the CPA pipeline.
    View Article
  • CPE: What to Know About Profits Interest

    Profits interest is a form of partnership ownership that offers recipients a share of future profits without a capital contribution. While offering strategic advantages, profits-interest contracts involve complex tax and accounting considerations and remain subject to potential regulatory changes.
    View Article
    CPE Creditable
  • What’s Happening Around Texas - July-August 2025

    Members in Austin held a happy hour to wrap up tax season and Houston members volunteered at the Botanic Gardens. Permian Basin members teamed up with UTPB students for a city cleanup. Southeast Texas gathered for a Spring Meeting and Victoria enjoyed a festive Member Appreciation Event.
    View Article
  • 2025-2026 TXCPA Chapter Officers

    Introducing TXCPA’s 2025-2026 chapter leaders – a dynamic group of professionals ready to elevate the accounting profession. With passion, purpose and a bold vision, they’ll guide our chapters forward and help shape the future of TXCPA across the state.
    View Article
  • Optimizing Auditor Precision: Addressing Biases in Large Language Model Technologies

    Large Language Models (LLMs) are transforming accounting and auditing by improving efficiency, uncovering financial trends and analyzing unstructured data, but using them also introduces risks, especially biases from training data and algorithms. Professionals are encouraged to stay educated on AI trends to use LLMs effectively.
    View Article
  • Meet the Chair

    In his first message as TXCPA Chair, Billy Kelley discusses his passion for TXCPA and goals for the year. He also reflects on the recent Annual Meeting in Galveston and encourages member engagement.
    View Article
  • TXCPA’s Successes and Key Issues from the 89th Texas Legislative Session

    TXCPA had a highly successful 89th Legislative Session, securing two major wins. Senate Bill 262 creates an additional pathway to CPA licensure and Senate Bill 522 modernizes CPA practice mobility. These achievements strengthen the CPA pipeline and protect the public.
    View Article
  • How ESG Can Create Value for Your Business

    The SEC has introduced climate-related disclosure rules to improve transparency for investors, sparking both support and criticism. This article highlights how businesses can view Environmental, Social and Governance (ESG) not just as a compliance issue but as a value-creating strategy.
    View Article
  • Increasing Your Marketing Prowess: How CPAs Can Market with Confidence

    This article discusses common misconceptions that CPAs have about marketing and how even the most successful innovators have marketed their ideas effectively. It offers practical tips for CPAs to market themselves authentically by focusing on excellent client service, continuously improving their skills and committing to execution.
    View Article
  • Take Note

    In this edition of Take Note: Accounting Opportunities Month; TXCPA Leadership Nominations; Accountants Confidential Assistance Network (ACAN); CGMA® Designation for Management Accountants; TXCPA’s 2025 CPE Programs; Accounting Excellence Awards Presented
    View Article
  • Classifieds

    The classified ad section features listings for practice sales, firm buyers and specialized services. Whether you're expanding, selling or exploring niche opportunities, these ads connect you to valuable prospects and resources.
    View Article

CHAIR
Mohan Kuruvilla, Ph.D., CPA

PRESIDENT/CEO
Jodi Ann Ray, CAE, CCE, IOM

CHIEF OPERATING OFFICER
Melinda Bentley, CAE

EDITORIAL BOARD CHAIR
Jennifer Johnson, CPA

MANAGER, MARKETING AND COMMUNICATIONS
Peggy Foley
pfoley@tx.cpa

MANAGING EDITOR
DeLynn Deakins
ddeakins@tx.cpa

COLUMN EDITOR
Don Carpenter, MSAcc/CPA

DIGITAL MARKETING SPECIALIST
Wayne Hardin, CDMP, PCM®

CLASSIFIEDS
DeLynn Deakins

Texas Society of CPAs
14131 Midway Rd., Suite 850
Addison, TX 75001
972-687-8550
ddeakins@tx.cpa

 

Editorial Board
Derrick Bonyuet-Lee, CPA-Austin;
Aaron Borden, CPA-Dallas;
Don Carpenter, CPA-Central Texas;
Rhonda Fronk, CPA-Houston;
Aaron Harris, CPA-Dallas;
Baria Jaroudi, CPA-Houston;
Elle Kathryn Johnson, CPA-Houston;
Jennifer Johnson, CPA-Dallas;
Lucas LaChance, CPA-Dallas, CIA;
Nicholas Larson, CPA-Fort Worth;
Anne-Marie Lelkes, CPA-Corpus Christi;
Bryan Morgan, Jr, CPA-Austin;
Stephanie Morgan, CPA-East Texas;
Kamala Raghavan, CPA-Houston;
Amber Louise Rourke, CPA-Brazos Valley;
Shilpa Boggram Sathyamurthy, CPA-Houston, CA
Nikki Lee Shoemaker, CPA-East Texas, CGMA;
Natasha Winn, CPA-Houston.

CONTRIBUTORS
Melinda Bentley; Kenneth Besserman; Kristie Estrada; Holly McCauley; Craig Nauta; Kari Owen; John Ross; Lani Shepherd; April Twaddle; Patty Wyatt